- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kashiwa, Shun (2)
-
Kuper, Lindsey (2)
-
Shen, Gan (2)
-
Bates, Mako (1)
-
Jafri, Syed (1)
-
Near, Joseph P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Choreographic programming (CP) is a paradigm for implementing distributed systems that uses a single global program to define the actions and interactions of all participants. Library-level CP implementations, like HasChor, integrate well with mainstream programming languages but have several limitations: Their conditionals require extra communication; they require specific host-language features (e.g., monads); and they lack support for programming patterns that are essential for implementing realistic distributed applications. We make three contributions to library-level CP to specifically address these challenges. First, we propose and formalizeconclavesandmultiply-located values, which enable efficient conditionals in library-level CP without redundant communication. Second, we proposecensus polymorphism, a technique for abstracting over the number of participants in a choreography. Third, we introduce a design pattern for library-level CP in host languages without support for monads. We demonstrate these contributions via implementations in Haskell, Rust, and TypeScript.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Shen, Gan; Kashiwa, Shun; Kuper, Lindsey (, Proceedings of the ACM on Programming Languages)Choreographic programming is an emerging paradigm for programming distributed systems. In choreographic programming, the programmer describes the behavior of the entire system as a single, unified program -- a choreography-- which is then compiled to individual programs that run on each node, via a compilation step called endpoint projection. We present a new model for functional choreographic programming where choreographies are expressed as computations in a monad. Our model supports cutting-edge choreographic programming features that enable modularity and code reuse: in particular, it supports higher-order choreographies, in which a choreography may be passed as an argument to another choreography, and location-polymorphic choreographies, in which a choreography can abstract over nodes. Our model is implemented in a Haskell library, HasChor, which lets programmers write choreographic programs while using the rich Haskell ecosystem at no cost, bringing choreographic programming within reach of everyday Haskellers. Moreover, thanks to Haskell's abstractions, the implementation of the HasChor library itself is concise and understandable, boiling down endpoint projection to its short and simple essence.more » « less
An official website of the United States government
